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The concept of ‘‘separation of procedures’’ and the ST-transformation are briefly
reviewed together with the equivalence theorem that a d-dimensional quantum
system with finite-range interactions is equivalent to the corresponding (d+1)-
dimentional classical system with finite-range interactions. This theorem yields the
introduction of the quantum transfer-matrix method. Thermo quantum dynamics
is formulated using the quantum transfer-matrix method. This new formulation
has the great merit that the thermal average OQP for any observable Q in the
thermodynamic limit is expressed as an expectation value over a temperature-
dependent state vector in the single (conjugate) Hilbert space in the contrast to
the usage of the double Hilbert space in thermo field dynamics.

KEY WORDS: Finite-range interactions; ST-transformation; quantum transfer-
matrix method.

1. INTRODUCTION

It has been a fascinating subject for long years to study analytically or even
numerically quantum many-body systems at finite temperatures. Many
investigations have been reported on this subject, and many methods to
attack this subject have been devised. Among them, the transformation
of a quantum system to the corresponding classical system, so-called
Suzuki–Trotter transformation (1–3) (ST-transformation) is quite general in
the sense that it can be applied to any system in any dimensions. This
transformation scheme yields the equivalence theorem (3) that a d-dimen-
sional quantum system with finite-range interactions is equivalent to the
corresponding (d+1)-dimensional classical system with finite-range
interactions. This theorem gives a general route to the formulation of the



quantum transfer-matrix method. (1, 4–7) The above ST-transformation is
also the essential ingredient of the quantum Monte Carlo method. (3, 8–10)

The quantum transfer-matrix method has also been used effectively for
numerical calculations (11–18) of quantum systems at finite temperatures.

In the present paper, the basic idea of the separation of procedures (19)

is reviewed in Section 2 to clarify both the background concept in the
ST-transformation and the above equivalence theorem. In Section 3, a new
formulation of thermo quantum dynamics is proposed on the basis of the
quantum transfer-matrix method. This has the great merit that any thermal
average is expressed in terms of the expectation value on a vector in the
single Hilbert space in the thermodynamic limit. This is a big contrast to
thermo field dynamics, (20–22) in which the introduction of the double Hilbert
space is inevitable.

Our new formulation is conceptually related to the Cg algebra for-
mulation (23) of thermal equilibrium, because both theories treat quantum
systems with infinite degrees of freedom. However, our theory uses this
aspect positively. Namely our formulation holds only in the thermody-
namic limit.

2. SEPARATION OF PROCEDURES, ST-TRANSFORMATION AND

EQUIVALENCE THEOREM

Almost all interesting phenomena occur due to computing or syner-
getic effects of two or more kinds of interaction. The concept of separation
of procedures plays an important role for investigating theoretically many
challenging problems of physics concerning cooperative phenomena such
as phase transitions. (24–27)

Mathematically, a formal solution of the relevant problem is often
expressed in terms of an exponential operator of the form exp[x(A+B)]
for the noncommutable operators A and B. A simple example of the sepa-
ration of procedures is given by the following exponential product for-
mula (1, 2)

ex(A+B)= lim
n Q .

(e
x
n Ae

x
n B)n. (2.1)

The n=1 approximant in (2.1), exAexB corresponds to the complete
separation of the two procedures described by A and B, respectively. In the
case of many noncommutable operators A1, A2,..., Aq, we have

ex(A1+A2+ · · · +Aq)= lim
n Q .

(e
x
n A1e

x
n A2 · · · e

x
n Aq)n. (2.2)
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Even the n=1 approximant for q of the order of the particle number
N( ’ 1023) is complicated enough to calculate the corresponding physical
quantities such as the partition function Z(b)=Tr exp[ − bH]. Such an
approximant was studied first by the present author (1) in studying the
critical phenomena of the three-dimensional Heisenberg model. It was
called ‘‘pair-product approximant (or model),’’ because the original density
matrix exp[bJ ; < i, j > Si · Sj] is approximated by the product of each
exponential operator (namely partial Boltzmann factor) corresponding to
the pair interaction, exp(bJSi · Sj). This very crude approximation still
retains the symmetry (O(3) symmetry) of the original Hamiltonian. There-
fore, the critical behavior of this system is expected to be described by the
‘‘pair-product model.’’ This expectation was partially confirmed by the
present author (1) using the high-temperature expansion and the Padé
approximants.

In this way, the above exponential product formula (2.2) (the so-called
Suzuki–Trotter formula or transformation) has the great merit that the
approximant (2.2) for any n retains the symmetry of the original exponen-
tial operator such as the unitarity (for pure imaginary x and hermitian
operators {Aj}) and the symplectic property for nonlinear dynamics.

Recently, the present author (28–40) found higher-order exponential
product formulas of the form

ex(A+B)=e t1Ae t2Be t3Ae t4B · · · +e tMA+O(xm+1) (2.3)

for an arbitrary positive integer m with the corresponding appropriate
positive integer M. The simplest method to construct them is to make use
of the following recursive scheme (28, 29)

S2m(x)=S2m − 2(p1x) S2m − 2(p2x) · · · S2m − 2(prx) (2.4)

with

S2(x)=e
x
2 AexBe

x
2 A and pj=pr − j+1. (2.5)

Here, the requirement that S2m(x) should be of the order 2m gives the
conditions

C
r

j=1
pj=1 and C

r

j=1
p2m − 1

j =0. (2.6)

In particular, for the case r=5, we have (28, 29)

Sg
2m(x)=(Sg

2m − 2(pmx))2 Sg
2m − 2((1 − 4pm) x)(Sg

2m − 2(pmx))2 (2.7)

with Sg
2 (x)=S2(x) and pm=(4 − 41/(2m − 1))−1.
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These are called ‘‘standard higher-order product formulas,’’ in the
sense that the decomposition parameters pm and |1 − 4pm | are both less than
unity and consequently that these are stable and desired approximations.

Using these exponential product formulas, a d-dimensional quantum
system with finite-range interactions can be transformed into the corre-
sponding (d+1)-dimensional classical system with finite-range interactions.
This is our ‘‘equivalence theorem.’’

3. THERMO QUANTUM DYNAMICS BASED ON THE QUANTUM

TRANSFER-MATRIX METHOD

First we explain the quantum transfer-matrix method (5–7) to solve ana-
lytically quantum systems at finite temperatures.

It is well known that the transfer-matrix method was introduced by
Kramers and Wannier, (43) Kubo, (44) and others (4, 45) and that it has been
used very effectively in solving several Ising models and other classical
systems in one and two dimensions. (47)

Now, according to the equivalence theorem, (3) a d-dimensional
quantum system is transformed to the corresponding (d+1)-dimensional
classical system. For example, a one-dimensional quantum system is trans-
formed into the corresponding two-dimensional system. One direction of
the transformed system, which is vertical to the original (real-space)
dimension, is called quantum (or Trotter) dimension (namely virtual-space
dimension). Then, two kinds of quantum transfer-matrices are defined in
this new system. Namely a ‘‘real-space’’ transfer-matrix TR is defined in the
real space (5) and a ‘‘virtual-space’’ transfer-matrix Tm is also defined in the
virtual space (5) for the Trotter number m.

Thus, the partition function of this transformed system with the
periodic boundary condition is given by

Z(b)=Tr e−bH= lim
m Q .

Zm(b); Zm(b)=Tr TN
m . (3.1)

Here, H denotes the Hamiltonian of the original system and N is the
system size. Owing to the exchangeability theorem, (5, 6) we can exchange the
above two limits in (3.1). Then, we have (5, 6)

lim
N Q .

1
N

log Z(b)= lim
m Q .

lim
N Q .

1
N

log Zm(b) (3.2)
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Let the maximum eigenvalue and the next maximum eigenvalue l (m)
max and

l (m)
2 , respectively. The remaining eigenvalues are denoted by l (m)

3 , l (m)
4 ,... .

Thus, the partition function Zm(b) is expressed as

Zm(b)=[l (m)
max]N 51+ C

i=2

1 l (m)
i

l (m)
max

2N6 . (3.3)

Consequently, we obtain

lim
N Q .

1
N

log Zm(b)=log l (m)
max. (3.4)

Therefore, Eq. (3.2) yields the formula (6)

lim
N Q .

1
N

log Z(b)= lim
m Q .

log l (m)
max. (3.5)

This formula is quite remarkable in that the free energy of the relevant
quantum system is given by the single (namely maximum) eigenvalue of the
quantum transfer-matrix, as was exemplified first in the XY spin chain. (6, 7)

This is a big contrast to the fact that Z(b) is given by all the eigenvalues
{Ej} of the Hamiltonian H as

Z(b)=C
j

e−bEj; b=
1

kBT
. (3.6)

Even the correlation length t of the relevant spin system is given by (7)

t−1= lim
m Q .

log(l (m)
max/l (m)

2 ), (3.7)

using the first two largest eigenvalues l (m)
max and l (m)

2 of the quantum transfer-
matrix Tm.

In this way, there has appeared a new possibility (48–59) to find compact
exact solutions of one-dimensional quantum systems at finite temperatures
such as the Heisenberg chain. It should be remarked here that we can also
formulate the quantum transfer-matrix inversely, namely starting from a
known classical system and that we define the transfer matrix T̃ of this
classical system whose interactions contain an extra parameter m corre-
sponding to the Trotter number and should be determined so that the par-
tition function of the relevant system may be equal to the trace of T̃m. This
formulation is possible when the equivalent classical system is known in
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advance, as in the Heisenberg chain (50, 53) (which is equivalent to the six-
vertex model). In this sense, the above formulation based on the ST-trans-
formtion is a quite generic tool. Thus, both the formulations are mathe-
matically equivalent. In any formulation, the exchangeability of the two
limits m Q . and N Q . is essential to obtain the nonlinear integral equa-
tion (50, 53) on l (.)

max.
Now, we formulate ‘‘thermo quantum dynamics’’ using the eigen-

vector {|Ym(b)P} of the above quantum transfer-matrix Tm with the
maximum eigenvalue l (m)

max:

Tm |Ym(b)P=l (m)
max |Ym(b)P (3.8)

for the Trotter number m with the normalization

OYm(b) | Ym(b)P=1 (3.9)

The thermal states {|Ym(b)P} play an essential role in thermo quantum
dynamics, as will be shown later.

It is impossible in general situations including a finite system to
express the thermal average

OQP=Tr Q exp(−bH)/Tr exp(−bH) (3.10)

in terms of an expectation value over a thermal state in a single Hilbert
space. Thus, a double Hilbert space was introduced (20, 21) in thermo ‘‘field’’
dynamics, in order to express the thermal average (3.10) or the trace in
terms of the expectation value of Q over the thermal vacuum |O(b)P as

OQP=OO(b)| Q |O(b)P (3.11)

in the double Hilbert space. The above formulation is very tricky, but it
can be used even for any finite systems.

In our new formulation, the thermal average OQP of a ‘‘local’’ opera-
tor Q in the thermodynamic limit (N Q .) is expressed as

OQP= lim
m Q .

OYm(b)| Q |Ym(b)P (3.12)

using the thermal state vectors {|Ym(b)P} in a single Hilbert space, as will
be proven below.

The word ‘‘local’’ means that the thermal average OQPm for the
Trotter number m is expressed as

OQPm=Tr Q TN
m /Tr TN

m . (3.13)
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If Q is not ‘‘local’’ in the above sense (for example, Q=S0SR for the spin
operator SR at the position R), we can easily extend the above formulation
(3.12) with (3.13) as follows:

OQPm=Tr Q(Tm) TN
m /Tr TN

m . (3.14)

with some appropriate operator Q(Tm) modified by the transfer-matrix Tm.
For example, if Q=S0SR, then

Q(Tm)=S0T
R
mSRT

−R
m . (3.15)

Thus, we arrive at the following expression

OQP= lim
m Q .

OYm(b)| Q(Tm) |Ym(b)P (3.16)

for any operator Q.
First we assume that the set of the normalized eigenvectors {|YiP} of

Tm constitutes a complete orthogonal one, where |Y1P — |Y(b)P. Then, the
trace Tr Q TN

m is expressed as

Tr QTN
m =C

i
OYi | Q TN

m |YiP

=C
i

[l (m)
i ]N OYi | Q |YiP

=[l (m)
max]N [OY1 | Q |Y1P+ C

i=2
(l (m)

i /l (m)
max)OYi | Q |YiP]. (3.17)

Therefore, we arrive finally at

OQP= lim
m Q .

(Tr QTN
m /Tr TN

m )

= lim
m Q .

OY1 | Q |Y1P= lim
m Q .

OYm(b)| Q |Ym(b)P. (3.18)

This is an extremely interesting result, both conceptually and practically.
Here, it should be remarked that the limit of {Tm} for m Q . may not

exist and consequently that the limit of {|Ym(b)P} for m Q . may not exist
either in some cases. This singular property of the quantum transfer-matrix
Tm is seen explicitly by studying some examples, say, the transverse Ising
chain described by the Hamiltonian (3, 61 −65)

H=−J C sz
j s

z
j+1 − C C sx

j . (3.19)
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Clearly, the singular matrix elements

Osj | exp 1 c

m
sx

j
2 |s −

jP=Am exp(Kmsjs
−

j) (3.20)

with c=bC and

Am=31
2

sinh 12c

m
241/2

and Km=
1
2

log 3coth 1 c

m
24 (3.21)

appear in the quantum transfer-matrix Tm for the transverse Ising chain.
Namely, Am Q 0 and Km Q . for m Q ..

However, the limit of the maximum eigenvalues {l (m)
max} should exist in

the limit m Q ., as a physical requirement. The mathematical structure of
this situation will be explained as follows.

If we diagonalize Tm in terms of the matrix Um as

UmTmU−1
m =T (d)

m , (3.22)

then we have

T (d)
m |Yg

m(b)P=l (m)
max |Yg

m(b)P (3.23)

with |Yg
m(b)P=Um |Ym(b)P. In this diagonal representation, the limits of

T (d)
m and |Yg

mP should exist for m Q .. Namely, it is expected that the
singularity of |Ym(b)P may be canceled by that of Um. This mathematical
aspect will be discussed elsewhere.

The present formulation of thermo quantum dynamics is also valid
even in higher dimensions, in which the thermodynamic limit N Q . is
taken only in one real dimension among d dimensions. The sizes of the
remaining (d − 1) dimensions may be either finite or infinite.

4. AN ALTERNATIVE FORMULATION OF THERMO QUANTUM

DYNAMICS

In the present section, we introduce another quantum transfer-matrix.
First, we explain the main idea in one dimension. Let the Hamiltonian of
the relevant system HN for the system size N.

We consider the limit

T(b)= lim
N Q .

ebHNe−bHN+1. (4.1)
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If this limit exists, the partition function of the relevant system may be
expressed in terms of the above limit (4.1) as

ZN(b)=Tr[T(b)]N (4.2)

for large N. This will be reasoned in the following:

lim
N Q .

N−1 log ZN(b) — lim
N Q .

N−1 log Tr e−bHN

= lim
N Q .

lim
L Q .

N−1 log Tr ebHLe−bHL+N

= lim
N Q .

lim
L Q .

N−1 log Tr(ebHLe−bHL+1)(ebHL+1e−bHL+2)

· · · (ebHL+N − 1e−bHL+N)

= lim
N Q .

N−1 log Tr[T(b)]N. (4.3)

The thermal average OQP of any local observable Q is then given

OQP=OY(b)| Q |Y(b)P (4.4)

where |Y(b)P is the eigenvector of T(b) with the maximum eigenvector
lmax, namely

T(b) |Y(b)P=lmax |Y(b)P. (4.5)

Physically, lmax should be equal to lg
max in the preceding section, and

|Y(b)P should be related through the following transformation

|Y(b)P=V |Yg(b)P. (4.6)

Here, V is defined by

V−1T(b) V=T (d)
. , (4.7)

where

T (d)
. = lim

m Q .

T (d)
m . (4.8)

Mathematical arguments on the convergence of this quantum transfer-
matrix and some applications of this formulation will be reported in future.
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5. SUMMARY AND DISCUSSION

In the present paper, we have reviewed some basic aspects of the
concept of separation of procedures and exponential product formulas
which yield the equivalence theorem. This is basic to the general formula-
tion of the quantum transfer-matrix method, which results in the present
new formulation of thermo quantum dynamics.

When the present paper was rewritten, the author was informed by
Araki (66) that a formula similar to (4.1) was proposed by him and its con-
vergence was proved.
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